## MTH 221: Linear Algebra, Exam One

Ayman Badawi
QUESTION 1. a) Given $A=\left[\begin{array}{ccc}3 & a & -2 \\ k & b & c \\ 4 & d & 4\end{array}\right]$ such that $\operatorname{det}(A)=-30$ and $F=\left[\begin{array}{ccc}3 & a & -2 \\ k & b+4 & c \\ 4 & d & 4\end{array}\right]$. Find $\operatorname{det}(F)$.
b) Given $C=\left[\begin{array}{cccc}1 & 2 & 4 & 6 \\ -1 & b_{1} & b_{2} & b_{3} \\ 2 & 4 & c_{1} & c_{2} \\ 3 & 6 & 12 & d_{1}\end{array}\right]$ such that $C\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=C_{3}$ has a unique solution (recall that $C_{3}$ is the third column of $C$ ).
i) What is the solution-set of the system? (i.e., find the values of $x_{1}, x_{2}, x_{3}, x_{4}$ )
ii) Find all possible values for $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, d_{1}$ ?

QUESTION 2. a)Given that $A$ and $B$ are NONZERO $n \times n$ matrices for some $n>1$ such that AB is a zero matrix. Convince me CLEARLY that $A$ AND $B$ are non-invertible (singular).
b) Given $A$ ia a $9 \times 9$ matrix such that $A^{2}=I_{9}$ but $A \neq I_{9}$ and $A \neq-I_{9}$. Convince me CLEARLY that $A+I_{9}$ AND $A-I_{9}$ are non-invertible.
c) Consider the system :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}-3 x_{4}=2 \\
-2 x_{1}-2 x_{2}+k x_{3}+6 x_{4}=10 \\
-x_{1}-x_{2}-x_{3}+3 x_{4}=k
\end{gathered}
$$

Is it possible that the system be consistent for some values of $k$ ? If yes or no, convince me CLEARLY that your conclusion is correct.

QUESTION 3. Find a $2 \times 3$ matrix $A$ such that

$$
\left(\left[\begin{array}{cc}
0 & -3 \\
-3 & 2
\end{array}\right] A\right)^{T}+2 A^{T}=\left[\begin{array}{ll}
0 & 2 \\
1 & 0 \\
0 & 4
\end{array}\right]
$$

QUESTION 4. Find the solution-set for the following system

$$
\begin{gathered}
x_{1}+x_{3}-x_{4}=2 \\
-2 x_{1}+x_{2}-x_{3}+2 x_{4}=0 \\
-2 x_{2}-x_{3}+x_{4}=4
\end{gathered}
$$

QUESTION 5. Let $A=\left[\begin{array}{ccc}4 & -2 & 6 \\ -2 & 3 & 6 \\ -8 & 4 & 7\end{array}\right]$. Use Cramer to find the value of $x_{3}$ in the system $A X=\left[\begin{array}{c}2 \\ -4 \\ 6\end{array}\right]$

QUESTION 6. Given $A$ is $4 \times 4$ and

$$
\begin{array}{lllllll}
A & \overline{2 R_{1}} & B & \overline{-2 R_{1}+R_{3} \rightarrow R_{3}} & C & \overline{0.25 R_{3}} & D=\left[\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 4 \\
0 & 0 & -1 & -1
\end{array}\right]
\end{array}
$$

a) Find $\operatorname{det}(A)$
b) Find $\operatorname{det}\left(2 A D^{T}\right)$
c) Find $\operatorname{det}\left(-A^{-1} B\right)$

## Question 6 CONTINUES

d) Find Two Elementary MATRICES, $E, F$ such that $E F D=B$
e) Find $A^{-1}$ [Hint : You do not need to find $A$, STARE Clearly !!!, however you may ignore this hint and do whatever]
f) Solve the system $A^{T} X=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]$

## Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

## Exam II , MTH 221 , Fall 2012

## Ayman Badawi

## TOTAL POINTS = 90

QUESTION 1. (10 points) Given $A$ ia an invertible $2 \times 2$ matrix such that $A^{-1}=0.25 A+0.75 I_{2}$ and $A \neq c I_{2}$ for some constant $c$.
(i) Find the eigenvalues of $A$. [Hint: Assume if $f(\alpha)$ is a polynomial of degree 2 such that the coefficient of $\alpha^{2}$ is 1 and $f(A)=$ zero matrix, then $f(\alpha)=C_{A}(\alpha)$ ]
(ii) Find $\operatorname{det}(A)$.

QUESTION 2. (12 points) Let $A$ be an invertible $2 \times 2$ matrix such that $-2,2$ are the eigen-values of $A$ such that $E_{2}=\left\{\left(2 x_{1}, x_{1}\right) \mid x_{1} \in R\right\}$ and $E_{-2}=\left\{\left(-2 x_{1}, 0\right) \mid x_{1} \in R\right\}$.
(i) Find a diagonal matrix $D$ and an invertible matrix $M$ such that $M D M^{-1}=A^{-1}$.
(ii) Find an invertible matrix $N$ and a diagonal matrix $F$ such that $N F N^{-1}=A^{T}$
(iii) Let $B=A+3 I_{2}$. Find $N(B)$.

QUESTION 3. (12 points) Give $A$ is a $3 \times 3$ matrix such that $C_{A}(\alpha)=(\alpha+1)^{2}(\alpha-2), E_{-1}=\left\{\left(-2 x_{2},-x_{2}, 0\right) \mid\right.$ $\left.x_{2} \in R\right\}$ and $E_{2}=\left\{\left(2 x_{3},-x_{3}, x_{3}\right) \mid x_{3} \in R\right\}$
(i) is $A$ diagnolizable? if yes find an invertible matrix $Q$ and a diagonal matrix $D$ such that $Q D Q^{-1}=A$. If no, then explain
(ii) Find a nonzero $3 \times 4$ matrix $F$, such that $A F=-F$
(iii) Let $B=A-I_{3}$. Find a basis for $N(B)$.

QUESTION 4. (10 points) Let $A=\left[\begin{array}{lll}4 & b & 8 \\ a & 6 & 2 \\ 6 & c & 0\end{array}\right]$. Given $A$ is row-equivalent to $\left[\begin{array}{lll}0 & 0 & 4 \\ 2 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(i) Find the values of $b, a, c$.
(ii) Find a basis for the column space of $A$.

QUESTION 5. (8 points) Let $A=\{(b+2 c, 2 b+4 c,-b-2 c) \mid b, c \in R\}$. Is $A$ a subspace of $R^{3}$ ? explain. If yes, find $\operatorname{dim}(\mathrm{A})$, basis for $A$ and write $A$ as a span of a basis.

QUESTION 6. (12 points) a) Let $A=\left\{F \in R^{2 \times 2} \mid \operatorname{Rank}(F) \leq 1\right\}$. Then $A$ is not a subspace of $R^{2 \times 2}$. Why?
b) Let $A=\{(a, b, c) \mid a+2 b+c+1=0\}$. Then $A$ is not a subspace of $R^{3}$. Why?
c) Let $A=\left\{f(x) \in P_{4} \mid f(1)=0\right.$ or $\left.f(-1)=0\right\}$. Then $A$ is not a subspace of $P_{4}$. Why?

QUESTION 7. (8 points) Let $A=\left\{\left.\left[\begin{array}{cc}2 a+-b & -2 a \\ 2 b & 4 a+b\end{array}\right] \right\rvert\, a, b \in R\right\}$. Then $A$ is a subspace of $R^{2 \times 2}$. Why? Find $\operatorname{dim}(\mathrm{A})$. Find a basis for $A$. Is $K=\left[\begin{array}{cc}13 & -12 \\ -2 & 23\end{array}\right]$ belongs to $A$ ? Explain

QUESTION 8. (18 points) Let $A=\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & 1 \\ 1 & 1 & 2 & 2 & 3\end{array}\right]$
a) Find $N(A)$ and write $N(A)$ as a span of a basis for $N(A)$
b) Find a basis for $\operatorname{Row}(A)$ and a basis for $\operatorname{Col}(A)$.
c) Let $B \in R^{3}$. Is the system $A X=B^{T}$ consistent? if yes, does it have a unique solution or infinitely many solutions? Explain. Is it possible that for every $B \in R^{3}$, the system $A X=B^{T}$ has a solution where $x_{2}=x_{4}=0$ ? explain

## Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

# Final Exam, MTH 221 , Fall 2012 

Ayman Badawi

[Circle one @ 12 or @ 2, MAKE SURE YOU HAVE 9 PAGES,
SCORE $\overline{100}$ ].
(i) (12 points) Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 2 & -1 \\
0 & 1 & 1
\end{array}\right]
$$

a. Find $A^{-1}$, i.e., the inverse of the matrix A .
b. Use part (a) to solve for $M$

$$
\left(A^{-1}\right)^{T} M=\left[\begin{array}{cc}
-1 & -3 \\
5 & 0 \\
3 & -2
\end{array}\right]
$$

(ii) (9 points) Let

$$
A=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
5 & 3 & 0 & 0 \\
3 & -20 & 1 & 0 \\
3 & -21 & -6 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{cccc}
-2 & 8 & 2 & 4 \\
0 & 1 & 6 & 3 \\
0 & -1 & -7 & -2 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

a. Compute $\operatorname{det}(A B)$.
b. Compute $\operatorname{det}(A+B)$.
(iii) (11 points) Let $v_{1}=(3,-2,4), v_{2}=(-6,4,-8), v_{3}=(-3,2,4)$, and let $W=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
a. Find a basis for $W$ and determine its dimension.
b. Determine whether $(-12,8,0)$ is a linear combination of $v_{1}, v_{2}$ and $v_{3}$.
(iv) (15 points) Determine if each of the following are linearly independent:
a. $\left\{\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}\right],\left[\begin{array}{ll}-3 & 0 \\ -6 & 9\end{array}\right]\right\}, \quad$ in $R^{2 \times 2}$
b. $\left\{2 x^{2}+x-1, x+1, x^{2}+x\right\}, \quad$ in $P_{3}$.
c. the columns of $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 2 & 1 \\ 5 & 4 & 4\end{array}\right], \quad$ in $R^{3}$

## (v) (11 points)

a. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the linear transform defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}+2 x_{3}-2 x_{4}, 2 x_{3}+x_{4}\right)
$$

Find the standard matrix representation of $T$.
b. Find a basis for $\operatorname{Ker}(T)$ ( $\operatorname{Kernel}$ of $T$ ) and a basis for $\operatorname{Range}(T)$ (the range of $T$ ).
(vi) (12 points) Let

$$
A=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

a. Find $C_{A}(\alpha)$, the characteristic polynomial of $A$.
b. Find the eigenvalues and the corresponding eigenspaces of $A$ (i.e., for each eigenvalue $\alpha$, find $E_{\alpha}$ ).
c. Find an invertible matrix $Q$ and a diagonal matrix $D$ such that $Q D Q^{-1}=A$. [you do not have to calculate $Q^{-1}$ ].
(vii) (10 points) Suppose that $A$ is an invertible $n \times n$ matrix and $\mathbf{v} \in R^{n}$ is an eigenvector for $A$ with corresponding eigenvalue 6 . Show that v is also an eigenvector for $B=A^{2}+12 A^{-1}$. What is the corresponding eigenvalue in this case?
(viii) (8 points)
a. Let $u=(3,0,4) \in R^{3}$ Find $\|u\|$. The length (norm) of $u$.
b. Find a scalar $c$, so that $v=(c, 10,6)$ is orthogonal to $u$.
(ix) ((12 points) Let $D=\operatorname{span}\{(1,0,1,1),(-1,0,1,1),(1,0,-1,-2)\}$.

Use the Gram-Schmidt method to find an orthogonal basis for $D$.

## Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

